If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-94=0
a = 1; b = 1; c = -94;
Δ = b2-4ac
Δ = 12-4·1·(-94)
Δ = 377
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{377}}{2*1}=\frac{-1-\sqrt{377}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{377}}{2*1}=\frac{-1+\sqrt{377}}{2} $
| x+1.3x=24 | | -9.6=-3.2+y/4 | | Y=3.5x-210 | | 32/n=-8 | | 4x*48=90 | | -6.2=y/8+6.6 | | 4w+2=6w | | W+(-w)=0 | | 11x+19x-6+5=-5+5-6 | | 12x*60=108 | | 5x+15+70+50=180 | | 7=y÷11.2 | | (8y+17)=(6-7) | | 8x+7x=+8-2x+7 | | y-72=85 | | 4/x-9-3=9/x-9 | | 55x+20+17x=165 | | x^2+4=29x^2-4= | | 7x—2=61 | | 7x+3+115=90 | | 3x-9=149 | | (14+2x)(30+2x)=836 | | y-23=48 | | 31/2r=7 | | -17=5x+8 | | F(x)=7x^2+5x-6 | | x^2=4=29x^2-4= | | x+71=34 | | 5x-30=2x-45 | | 6d=54;d | | 6=5/3(8)+b | | 1/8g=4 |